169 research outputs found

    Personalized Sketch-Based Brushing in Scatterplots

    Get PDF
    Brushing is at the heart of most modern visual analytics solutions and effective and efficient brushing is crucial for successful interactive data exploration and analysis. As the user plays a central role in brushing, several data-driven brushing tools have been designed that are based on predicting the user's brushing goal. All of these general brushing models learn the users' average brushing preference, which is not optimal for every single user. In this paper, we propose an innovative framework that offers the user opportunities to improve the brushing technique while using it. We realized this framework with a CNN-based brushing technique and the result shows that with additional data from a particular user, the model can be refined (better performance in terms of accuracy), eventually converging to a personalized model based on a moderate amount of retraining.acceptedVersio

    Scale-Space Splatting: Reforming Spacetime for the Cross-Scale Exploration of Integral Measures in Molecular Dynamics

    Full text link
    Understanding large amounts of spatiotemporal data from particle-based simulations, such as molecular dynamics, often relies on the computation and analysis of aggregate measures. These, however, by virtue of aggregation, hide structural information about the space/time localization of the studied phenomena. This leads to degenerate cases where the measures fail to capture distinct behaviour. In order to drill into these aggregate values, we propose a multi-scale visual exploration technique. Our novel representation, based on partial domain aggregation, enables the construction of a continuous scale-space for discrete datasets and the simultaneous exploration of scales in both space and time. We link these two scale-spaces in a scale-space space-time cube and model linked views as orthogonal slices through this cube, thus enabling the rapid identification of spatio-temporal patterns at multiple scales. To demonstrate the effectiveness of our approach, we showcase an advanced exploration of a protein-ligand simulation.Comment: 11 pages, 9 figures, IEEE SciVis 201

    Representative factor generation for the interactive visual analysis of high-dimensional data

    Get PDF
    Datasets with a large number of dimensions per data item (hundreds or more) are challenging both for computational and visual analysis. Moreover, these dimensions have different characteristics and relations that result in sub-groups and/or hierarchies over the set of dimensions. Such structures lead to heterogeneity within the dimensions. Although the consideration of these structures is crucial for the analysis, most of the available analysis methods discard the heterogeneous relations among the dimensions. In this paper, we introduce the construction and utilization of representative factors for the interactive visual analysis of structures in high-dimensional datasets. First, we present a selection of methods to investigate the sub-groups in the dimension set and associate representative factors with those groups of dimensions. Second, we introduce how these factors are included in the interactive visual analysis cycle together with the original dimensions. We then provide the steps of an analytical procedure that iteratively analyzes the datasets through the use of representative factors. We discuss how our methods improve the reliability and interpretability of the analysis process by enabling more informed selections of computational tools. Finally, we demonstrate our techniques on the analysis of brain imaging study results that are performed over a large group of subjects

    Interactive Focus+Context Visualization with Linked 2D/3D Scatterplots

    Get PDF
    Scatterplots in 2D and 3D are very useful tools, but also suffer from a number of problems. Overplotting hides the true number of points that are displayed, and showing point clouds in 3D is problematic both in terms of perception and interaction. We propose

    DimLift: Interactive Hierarchical Data Exploration through Dimensional Bundling

    Get PDF
    The identification of interesting patterns and relationships is essential to exploratory data analysis. This becomes increasingly difficult in high dimensional datasets. While dimensionality reduction techniques can be utilized to reduce the analysis space, these may unintentionally bury key dimensions within a larger grouping and obfuscate meaningful patterns. With this work we introduce DimLift , a novel visual analysis method for creating and interacting with dimensional bundles . Generated through an iterative dimensionality reduction or user-driven approach, dimensional bundles are expressive groups of dimensions that contribute similarly to the variance of a dataset. Interactive exploration and reconstruction methods via a layered parallel coordinates plot allow users to lift interesting and subtle relationships to the surface, even in complex scenarios of missing and mixed data types. We exemplify the power of this technique in an expert case study on clinical cohort data alongside two additional case examples from nutrition and ecology.acceptedVersio

    Interactive Visual Analysis of Structure-borne Noise Data

    Get PDF
    Numerical simulation has become omnipresent in the automotive domain, posing new challenges such as high-dimensional parameter spaces and large as well as incomplete and multi-faceted data. In this design study, we show how interactive visual exploration and analysis of high-dimensional, spectral data from noise simulation can facilitate design improvements in the context of conflicting criteria. Here, we focus on structure-borne noise, i.e., noise from vibrating mechanical parts. Detecting problematic noise sources early in the design and production process is essential for reducing a product's development costs and its time to market. In a close collaboration of visualization and automotive engineering, we designed a new, interactive approach to quickly identify and analyze critical noise sources, also contributing to an improved understanding of the analyzed system. Several carefully designed, interactive linked views enable the exploration of noises, vibrations, and harshness at multiple levels of detail, both in the frequency and spatial domain. This enables swift and smooth changes of perspective; selections in the frequency domain are immediately reflected in the spatial domain, and vice versa. Noise sources are quickly identified and shown in the context of their neighborhood, both in the frequency and spatial domain. We propose a novel drill-down view, especially tailored to noise data analysis. Split boxplots and synchronized 3D geometry views support comparison tasks. With this solution, engineers iterate over design optimizations much faster, while maintaining a good overview at each iteration. We evaluated the new approach in the automotive industry, studying noise simulation data for an internal combustion engine.Comment: Accepted for IEEE VIS 2022 and IEEE TVC
    corecore